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Therefore L — U factorization would be a wasted effort. Pivoting
is not necessary, because the Jacobian [J] is and remains diagonally
dominant. Iteration starts with all off diagonal elements set to 0. Later
[J] contains in its main diagonal always a sum of main diagonal
elements r,, but off diagonal only zeros or single elements 7% as
given in (9). Therefore simple Gauss-Jordan algorithm is superior in
this application.

Due to the quadratic type of nonlinearities in defining (8) the
convergence is very fast and reliable. In practical applications within
line theory the root matrix is not only proven diagonally dominant
but the off diagonal elements are indeed small compared with the
diagonal ones. Within only two iteration steps the example from
Fig. 1 shows results within 10™* accuracy range.

VII. SQUARE ROOT OF SYMMETRICAL MATRICES

The algorithm proposed in this paper applies to an arbitrary
positive definite matrix. This algorithm can be simplified if in
addition the matrix is symmetric, because the root matrix will also
be symmetric and therefore contains fewer unknown elements. This
simplification will be applicable in general transmission line theory
where some calculations involve square roots of [L] or [C]. for
example [L]%[C][L]% or [C]%[L][C]% respectively [3]. In some
special cases the product [LCT] is symmetric and the simplification
can also be applied.

With a slight modification of the definition of the functions f.x
to be zeroed by Newton’s algorithm and a new index mapping for
equations and variables it is possible to make the resulting Jacobian
matrix [J] also symmetrical and use specialized equation solvers to
calculate the correction term [S].
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Elimination of Spurious Solutions in the
Calculation of Eigenmodes by Moment Method

B. Souny, H. Aubert, and H. Baudrand

Abstract—In this paper the origin of nonphysical selutions obtained
with Galerkin’s method is described. To remove these spurious solutions
a practical criterion is derived. It is shown on a patch resonator ex-
ample with expansion functions satisfying edge conditions, that spurious
solutions generated by the conventional approach are eliminated by the
application of the proposed method.

1. INTRODUCTION

The problem of finding the eigenmodes of a transmission line
or of a cavity is a classical one. Several papers, dealing with
integral methods, describe how to determine these eigenmodes by
Galerkin's method [1]-[4], but the choice of expansion functions
which incorporate the edge conditions seems to generate nonphysical
solutions, named spurious solutions [5].

The problem of spurious solutions has been mostly developed in
the context of the finite-element method: the inaccurate approximation
of the zero eigenvalue and the corresponding eigenfunctions generate
spurious solutions [6]. A similar result has been obtained by the
authors of the present paper in the context of transverse resonance
method [7): the inaccurate approximation of the infinite eigenvalue
and the corresponding eigenfunctions generate spurious solutions.

For an integral equation the origin of spurious solution is given
in [8], and a criterion for their elimination is demonstrated, but this
criterion gives no practical information about the choice of expansion
and weighting functions.

In this paper a practical criterion for a proper choice of the
expansion functions and the weighting functions is given.

II. THEORY

A. Notation

The extended [9] or symbolic [10] operator concept applied to
moment methods allows one to use generalized expansion functions
(they are in fact linear functionals), hence we further suppose here
that we use an extended operator.

Extended or symbolic operator used in functional analysis is
associated to the so-called transposed operator concept rather than
adjoint one, as well as the use of duality product rather than scalar
product [11]. Duality product is more general than scalar product;
for example it is well known that it is not mathematically possible to
define a scalar product involving the “Dirac function.”

The notations for spaces, transposed operator and duality product
are now introduced:

Let U and V represent, respectively, the domain and the range of
an operator L. The elements of U and V are functions.

Let U represent the topological dual space of U and 7 represent the
topological dual space of V. The elements of I’ and V" are continuous
linear functionals.
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V and U are respectively, the domain and the range of the
transposed operator of L denoted by L. To define it we introduce
Dirac’s notation [12] which is classically used in quantum mechanic.

According to this notation, the elements of VoU, (functionals)
are denoted by (---| and the elements of V or U (functions) are
denoted by |---). Moreover, the value of a functional {---| on a
function | - - -} is denoted by (- - - |- - -}. It is important to note that the
symbol {---|---), does not necessarily designate an inner product: it
is more generally a duality product (Cf. theory of distributions {11]).

One can note

L(lg) ""E™" |Lg). M
And L is defined by the following relationship
(Lflg) € (fILg) feV, Vg €U. @)
One can write
(fIL

{<Lf L aon } = (Lflg) < (FILg) ™2 (£)Llg).
|Lg) = 3

The problem to solve consists in finding the values of the parameter
k which allows a nonzero solution for the following equation

(fIL(k) = 0. ©)

Let {{#.|}, ¢ € [1. N] be a basis of elements extracted from a
complete basis of V. The basis {{H.|} spans a subspace of V' denoted
by V. Thus, an Nth order approximation {fx| of (f| is given by

N
<fNI = fiH|. ©)

In many cases these continuous linear functionals are defined with
functions named expansion functions. However, in some cases it is
not possible to associate the functional to a function, and then the
continuous linear functional is often said to be a symbolic function,
an example is the Dirac symbolic function. In this work the elements
of Vy are always named expansion functions.

Let |W,), j € [1, N] be a basis of elements extracted from a
complete basis of the space U. The basis {|W,}} spans a subspace
Un of U. The |W,) are named weighting functions. Now, the
problem (4) is replaced by the following N-order matricial equation

N
D A(HIL(K)W,) =0 V€L, N]. (©6)

=1

Lig)

B. Origin and Elimination of Spurious Solutions

In the context of moment methods applied to the resolution of
integral equations in Hilbert spaces, Schoeder and Wolf [8] have
demonstrated that the occurrence of spurious solutions lies in the
inaccurate choice of weighting functions for a given set of expansion
functions. In this paper, a more general and practical criterion is
demonstrated in normed vector spaces in which no inner product is
defined (for instance, the space of distributions [11]).

Consider a basis of weighting functions |W,), j € [1, N] in the
subspace Un. Then, there is a set of functions {(w,|, j € [¢, N,
composed of N functions of U forming a reciprocal basis for a
subspace Un of U and given by the following relationship [10]

{(w,|W;) = 6., Vi, jel[l. N] @)
where §8,, is the Kronecker delta.

Consider the operator W defined by the following relationship

N
W= W w| ®)

As for L, the symbol W has two meanings

Applied to |- -} it is an operator fromU into Uy

Applied to {---| it is the transpose operator from U into Ux

In this last case we have

N
v(T| e U: <T|W = Z (TIW, Y, |. ©)

2z=1

Thus, the criterion given in [11] for the elimination of spurious
solution can be generalized for normed vector spaces as follows

{range of L on Vi'} N {Kernel of W on Un} = {0}. 10y

But no practical indication for the choice of weighting functions
{|W,)} is given by (10).

C. Practical Criterion

We establish now an useful criterion for this choice from equation
(10).

(H,|L represent the image by L of (H,|. The set {{H,|L} spans
the space IV, range of L on Vv. One can extract from this set a
subset of independent elements. The dimension of this subset is M,
with M < N (M = N if the parameter k is such that L(k) is not
singular). Therefore, the elements {{H,|L}: € [1, M| form a basis
of I VN. ‘

If the set {|WW,)} satisfies the criterion (10) it can be demonstrated
[14] that it is possible to complete the set {(H,|L}i € [1, M] with
elements of U in order to construct a set of N linearly independent
elements and generate in this way a basis of the idd subspace U~
of U. It is useful to norm the reciprocal basis of this set and we
denote it {|h,)}. The set {|h,)} is a basis for Ux (Anocther basis
of the subspace Uy is the basis {|W,)}). The transformation matrix
between these two sets, is a regular matrix so the two sets are said
equivalent in Un.

Using the two sets {{H.|} and {|k,)} the matrix representation of
the operator is very simple. We have

(HJL(k)|h) = A6y X #0 Vie[l, N, jell, M] (1)

(H|L(E)|h,)) =0 Vji>M (12)

the term (H.|L(k)|¢h)) is the term ij in the matrix representation
of the operator.

So if L(k) is not singular the representation is diagonal without
any zero.

If L(k) is singular for 4 < M there are only diagonal terms
A(k) # 0 and for ¢ > M all term are null. ’

This demonstrate that only if M < N (singular operator) the
determinant of this matrix is null.

It can be demonstrated [14] that when the parameter k is close to
a singular value for the operator L, at least one of the X, (k) gets
close to zero so the determinant of this matrix is continuous in the
vicinity of the critical value of k.

So, we propose to formulate the criterion (10) as follows

Any set of weighting functions {|W,)} must be equivalent to a
set {|h;)} defined previously.

When there is only one element in the sets {(H.|} and {|W;)}
this criterion is verified if (H|L(k)|W) # 0 when (H|L(k) # 0.
Therefore, no spurious solution is observed in this case.

However, the rigorous application of this criterion needs a lot of
time [14] because it supposes the numerical generation of the set
{|h,)} (dependent of k).
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Fig. 1. Geometry of the slot resonator.

We propose subsequently to approximate {|h;)} when {{H;|} is
given (generally from physical considerations about electromagnetic
fields behavior) because it can be demonstrated [14] that if the error
on {|h;)} is of the first order, the values of X; are correct to the
second order so that the approximate set can be chosen independent
of k in a restricted range of this parameter as demonstrated in the
following example.

III. EXAMPLE

The proposed method is applied to the calculation of modes in
uniform wave guides such as finlines and microstrip lines, and to the
determination of modes in patch and slot resonators (shielded in a
metallic box). The method of resolution is the transverse resonance
method [2] and [3]. For space reasons, only the results obtained in
the case of patch resonator (cf. Fig. 1) are presented. This structure
has been studied by Itoh [15] with one expansion function.

The expansion functions (13) have been chosen in order to satisfy

edge conditions
cos (n’"gf_zl)) sin ("”Ej“zl))

(x1 — z)(x — z2)

cos (mzwfuz—zl)) sin (mmwz(uz—zl))

(21 = 2)(z ~ 22)

Hxpnom, =

13)

HZamzymz =

ne, even € [0, 2(N — 1)];
mzeven € [2, 2N|m., odd € [1, 2N — 1];
n.odd € [1, 2N — 1].

The determinant of the matrix generated by the moment method

using these weighting functions (Galerkin’s method) is given in
Fig. 2. ,
As shown in the preceding section, for the special choice of a
unique expansion function, Galerkin’s method does not give spurious
solutions. But for a number of expansion functions greater than one,
spurious solutions appear.

The study of the image of these expansion functions by the operator
L shows that it is very well approximated by the expansion functions
itself in the 600-1200 MHz frequency range. So for the weighting
functions we take a reciprocal set of the expansion functions set

1,00E+00 -
’ Determinant value
spurious solutions

\

'
5,00E-01 -P|

'
0,00E+00

6,00 1,00E+09 1,20E+09
~ = = 1 exp.function

5.00E-01 —— 2exp. functions
o I — - 3 exp. functions
-1,00E+00 -

Fig. 2. Determinant value with Galerkin method.

1,00E+00
Determinant value
= = = 1 exp. function
5,00E-01 2 exp. functions
— = 3 exp. functions
Y frequency (Hz)
0,00E+00 = } } |
6,00E+0§ - 8,00E+08 1,00E+08 - — " " 1,20E409
Y . P e -
-5,00E-01
-1,00E+00
Fig. 3. Determinant value with proposed method.

(13). This set is defined by (14)

O nym(r — 1)
Wx ngm, = . cos (T) (z1 — 2)(z — z2)
©sin (nzw(z — z1)>
We
Wz,m, m, = 2z cos <M(Z—_Ziz> (z1 — 2)(z — z39)
w, W

(225 @

0z, 0> normalization terms

Nz, even € [0, 2(N — 1)];
myeven € [2, 2N|m,, odd € [1, 2N — 1];
nyodd € [1, 2N —1].
The determinant of the matrix generated by the moment method

using these weighting functions is given in Fig. 3. No spurious
solution is detected in this case.
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IV. CoNCLUSION

The calculation of eigenmodes in uniform wave guides or in
resonant cavities by integral equation and moment method sometimes
generates non physical solutions. In this paper a practical criterion
for a correct choice of the weighting functions is demonstrated. Its
rigorous implementation would be calculus intensive but we show
that an approximate implementation efficiently eliminates spurious
solutions generated by the conventional Galerkin’s method without
lengthening computations.
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A New FEM Approach for Open
Boundary Laplace’s Problem

Dong Xingqi and An Tongyi

Abstract—An efficient improved finite element method (FEM) is pre-
sented for electromagnetic Laplace’s problems with open boundary. The
whole infinite domain is divided into a set of infinite elements instead
of ordinary finite elements. Since a special FEM discretization and FEM
solving procedure are used, it can not only take much less computer
memory than that the conventional FEM needs, but also avoid the
calculation error introduced by the truncated boundary or absorbing
boundary condition used in conventional FEM.

I. INTRODUCTION

Recently, FEM has been more and more widely used for many
electromagnetic problems with open boundary. Because in FEM the
solution domain is discretized with finite elements, only finite domain
problems can be handled directly. So, the solution domain with
open boundary must be truncated. A relatively simple technique to
implement is to select an external boundary with a zero potential
to truncate the solution domain. Another alternative is to use an
appropriate absorbing boundary condition or infinite element [1]-[3].

This paper presents a new FEM technique for static electromagnetic
problems with open boundary. It utilizes a special discretization form
to divide the whole infinite domain into infinite triangular elements.
So no truncated boundary or absorbing boundary is needed and
the calculation error produced by appropriate boundary condition is
avoided. As an example, the capacitance matrix for the two coupled
microstrips with open-boundary is calculated and the numerical
results are compared with those obtained by other methods.

II. New FEM PROCEDURE

We begin with our discussion of a two-dimensional electrostatic
open boundary problem. Assuming that the solution domain is €2
and its open boundary is I';. We use a regular polygon I'y, which
contains the solution domain {2, to divide the whole infinite domain
Q into two parts (see Fig. 1). Defining that the region within I'y is
€., and the one out of I'o is Qous. o may be placed very close to
T's. If T’ itself is a regular polygon, then it is selected as I'o.

A. Analysis of Qin

Because the region €2, is a finite domain, it can be treated by
conventional FEM. The electromagnetic field distribution can be
obtained from the scalar potential ®(x, y) satisfying the Laplace’s
equation with associated Dirichlet or Neumann boundary condition.
The region £2,, is subdivided to triangular finite elements and the
stiffness matrix A, can be obtained by assembling each element
coefficient matrix. Assuming that the number of nodes on I'o is 3y
and the scalar potentials on Ty form a column vector ®o of order
My, the number of remaining nodes is M,,, and the corresponding
potentials form a column vector ®., of order M,.. Thus, the
functional within the region €2,, can be obtained by
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