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Therefore L – U factorization would be a wasted effort. Pivoting

is not necessary, because the Jacobian [J] is and remains diagonally

dominant. Iteration starts with all off diagonal elements set to O. Later

[J] coritains initsmain diagonal always asumof main diagonal

elements r,, but off diagonal only zeros or single elements T,k as

given in (9). Therefore simple Gauss-Jordan algorithmic superior in

this application.

Due to the quadratic type of nonlinearities in defining (8) the

convergence is very fast and reliable. Impractical applications within

line theory the root matrix is not only proven diagonally dominant

but the off diagonal elements are indeed small compared with the

diagonal ones. Within only two iteration steps the example from

Fig. 1 shows results within 10-4 accuracy range.

VH. SQUARE ROOT OF SYMMETRICAL MATRICES

The algorithm proposed in this paper applies to an arbitrary

positive definite matrix. This algorithm can be simplified if in

addition the matrix is symmetric, because the root matrix will also

besymmetric andtherefore contains fewer unknown elements. This

simplification will be applicable in general transmission line theory

where some calculations involve square roots of [L] or [C], for

example [L]~[C][L]~ or [C]*[L][C]* respectively [3]. In some

special cases the product [LC] is symmetric and the simplification

can also be applied.

With a slight modification of the definition of the functions f,k

to be zeroed by Newton’s algorithm and a new index mapping for

equations and variables it is possible to make the resulting Jacobian

matrix [J] also symmetrical and use specialized equation solvers to

calculate the correction term [S].
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Elimination of Spurious Solutions in the

Calculation of Eigenmodes by Moment Method

B. Souny, H. Aubert, and H. Baudrand

Abstract— In this paper the origin of nonphysical solutions obtained
with Galerkln’s method is described. To remove these spurious solutions

a practical criterion is derived. It is shown on a patch resonator ex-

ample with expansion functions satisfying edge conditions, that spurious

solutions generated by the conventional approach are eliminated by the

application of the proposed method.

I. INTRODUCTION

The problem of finding the eigenmodes of a transmission line

or of a cavity is a classical one. Several papers, dealing with

integral methods, describe how to determine these eigenmodes by

Galerkin’s method [1 ]–[4], but the choice of expansion functions

which incorporate the edge conditions seems to generate nonphysical

solutions, named spurious solutions [5].

The problem of spurious solutions has been mostly developed in

the context of the finite-element method: the inaccurate approximation

of the zero eigenvalue and the corresponding eigenfunctions generate

spurious solutions [6]. A similar result has been obtained by the

authors of the present paper in the context of transverse resonance

method [7]: the inaccurate approximation of the infinite eigenvalue

and the corresponding eigenfunctions generate spurious solutions.

For an integral equation the origin of spurious solution is given

in [8], and a criterion for their elimination is demonstrated, but this

criterion gives no practical information about the choice of expansion

and weighting functions.

In this paper a practical criterion for a proper choice of the

expansion functions and the weighting functions is given.

II. THEORY

A. Notation

The extended [9] or symbolic [10] operator concept applied to

moment methods allows one to use generalized expansion functions

(they are in fact linear functional), hence we further suppose here

that we use an extended operator.

Extended or symbolic operator used in functional analysis is

associated to the so-called transposed operator concept rather than

adjoint one, as well as the use of duality product rather than scalar

product [1 1]. Duality product is more general than scalar product:

for example it is well known that it is not mathematically possible to

define a scalar product involving the “Dirac function.”

The notations for spaces, transposed operator and duality product

are now introduced:

Let U and V represent, respectively, the domain and the range of

an operator L. The elements of U and V are functions.

Let U represent the topological dual space of U and ~ represent the

topological dual space of V. The elements of ~r and T_’are continuous

linear functional.
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V and U are respectively, the domain and the range of the
transposed operator of L denoted by ~. To define it we introduce
Dirac’s notation [12] which is classically used in quantum mechanic.

According tothisnotation, theelementsof~ oru, (functionals)
are denoted by (.. . I and the elements of V or U (functions) are
denoted by I...). Moreover, the value of a functional (l on a
function 1...) is denoted by (... 1...). It is important to note that the
symbol (.. . 1...), does notnecessarily designate an inner product: it
ismoregenerally aduality product (Cf. tieo~of &stributions [11]).

One can note

L(]g)) ‘“’a’on lLg) . (1)

And L is defined bythe following relationship

(2)

One can write

{

(Lfl ‘-=: (flL

lLg) = Llg) }
a (tflg) ‘~f (f\Lg) ‘“’~i”n (f IL[g).

(3)
The problem to solve consists in finding the values of the parameter

k which allows anonzero solution forthe following equation

(f\L(k) = O. (4)

Let {(H, I}, i ~ [1, N] be a basis of elements extracted from a

complete basis of V. The basis {(H, I} spans a subspace of ~ denoted

by VN. Thus, an Nth order approximation (.fN I of (~1 is given by

(5)
\ %=1

In many cases these continuous linear functional are defined with

functions named expansion functions. However, in some cases it is

not possible to associate the functional to a function, and then the

continuous linear functional is often said to be a symbolic function,

an example is the Dirac symbolic function. In this work the elements

of ~tJ are always named expansion functions.

Let IWJ ), j E [1, N] be a basis of elements extracted from a

complete basis of the space U. The basis {] Wj ) } spans a subspace
UjV of U. The IWJ ) are named weighting functions. Now, the

problem (4) is replaced by the following N-order matricird equation

&WW) = O V,& [1, N].
,=1

(6)

B. Origin and Elimination of Spurious Solutions

In the context of moment methods applied to the resolution of

integral equations in Hilbert spaces, Schoeder and Wolf [8] have

demonstrated that the occurrence of spurious solutions lies in the

inaccurate choice of weighting functions for a given set of expansion

functions. In this paper, a more general and practical criterion is

demonstrated in normed vector spaces in which no inner product is

defined (for instance, the space of distributions [1 l]).

Consider a basis of weighting functions IWj ), j E [1,N] in the
subspace UN. Then, there is a-set of functions (w$ 1, ~ ~ [i, ~],

composed of N functions of U forming a reciprocal basis for a

subspace ~IV of ~ and given by the following relationship [10]

(’W, IW;) = (fZ, vi, j & [1. N] (7)

where &j is the Kronecker delta.

Consider the operator W defined by the following relationship

N

w = ~lwt)(wzl.
,=1

(8)

As for L, the symbol W has two meanings

Applied to \ co.) it is an operator fromu into UN

Applied to (. ~. I it is the transpose operator from U into ~rN

In this last case we have

V(T1 E u:
(

qw = ~ (TIW,)(WJ (9)
,=1

Thus, the criterion given in [11] for the elimination of spurious

solution can be generalized for normed vector spaces as follows

{range of L on ~N} n {Kernel of W on UN} = {O}. (lo)

But no practical indication for the choice of weighting functions

{lW,)} is given by (10).

C. Practical Criterion

We establish now an useful criterion for this choice from equation

(lo).
(H,IL represent the image by-L of (lT, 1. The set {(H, IL} spans

the space ~VN, range of L on V.. one can extract from this set a

subset of independent elements. The dimension of this subset is M,

with M ~ N (M = N if the parameter k is such that L(k) is not

singular). Therefore, the elements {(H, IL}z’ E [1, M] form a basis

of lVjV .

If the set {I W~ ) } satisfies the criterion (10) it can be demonstrated

[14] that it is-possible to complete the set {(H, lL}i E [1, M] with

elements of U in order to construct a set of N linearly independent

elements and generate in this way a basis of the idd subspace ON

of ~. It is useful to norm the reciprocal basis of this set and we

denote it { Ihj ) }. The set { Ihj ) } is a basis for UN (Another basis

of the subspace UIV is the basis { IWj ) } ). The transformation matrix

between these two sets, is a regular matrix so the two sets are said

equivalent in UN.

Using the two sets {(H, I} and { Ihj ) } the matrix representation of

the operator is very simple. We have

(H, \L(k)[hj) = A,ti,, Aj # O vi E [1,N],j c [1,M] (11)

(H,lL(k)lhj) = O Vj > kf (12)

the term (H, IL(k) lih~ ) is the term ij in the matrix representation

of the operator.

So if L(k) is not singular the representation is diagonal without

any zero.

If L(k) is singular for i ~ A4 there are only diagonal terms

J,(k) # O and for z’ > M all term are null.

This demonstrate that only if kf < N (singular operator) the

determinant of this matrix is null.

It can be demonstrated [14] that when the parameter k is close to

a singular value for the operator L, at least one of the ~,(k) gets

close to zero so the determinant of this matrix is continuous in the

vicinity of the critical vtdue of k.

So, we propose to formulate the criterion (10) as follows

Any set of weighting functions {I Wj ) } must be equivalent to a

set { /hJ ) } defined previously.

When there is only one element in the sets {(H, I} and {Ill’,)}

this criterion is verified if (lf\L(k)\lV) # O when (HIL(k) # O.

Therefore, no spurious solution is observed in this case.

However, the rigorous application of this criterion needs a lot of

time [14] because it supposes the numericaf generation of the set

{lhJ)} (dependent of k).
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‘1

LLx= 15.5 cm; Lz = 30 cm, wx = 3,39 cm

WZ= 12cm; hl =8.89 cm, h2= 1.27 cm

Fig. 1. Geometry of the slot resonator.

We propose subsequently to approximate {I h~ )} when {(~i I} is

given (generally from physical considerations about electromagnetic

fields behavior) because it can be demonstrated [14] that if the error

on { Ih~ ) } is of the first order, the values of Ai are correct to the

second order so that the approximate set can be chosen independent

of k in a restricted range of this parameter as demonstrated in the

following example.

III. EXAMPLE

The proposed method is applied to the calculation of modes in

uniform wave guides such as finlines and rnicrostrip lines, and to the

determination of modes in patch and slot resonators (shielded in a

metallic box). The method of resolution is the transverse resonance

method [2] and [3]. For space reasons, only the results obtained in

the case of patch resonator (cf. Fig, 1) are presented. This structure

has been studied by Itoh [15] with one expansion function.

The expansion functions (13) have been chosen in order to satisfy

edge conditions

Cos (n.n(z —z~) )(sin
nz7r(. -z1)

~.
Hx,n Z,mz= )

/(zl - $)($ - J“

Cos (?nZ?r(z-q) )(sin
m=r(z —zl)

Hz,mZ,m Z =
w. )

J(z, - 2)(Z - ~,)wo

(13)

rk, even c [0, 2(N – l)];

m. even E [2, 2N]rn., odd 6 [1, 2A7 – 1];

nz odd 6 [1, 2N – 1].

The determinant of the matrix generated by the moment method

using these weighting functions (Galerkin’s method) is given in

Fig. 2.

As shown in the preceding section, for the special choice of a

unique expansion function, Galerkin’s method does not give spurious

solutions. But for a number of expansion functions greater than one,

spurious solutions appear.

The study of the image of these expansion functions by the operator

L shows that it is very well approximated by the expansion functions

itself in the 600-1200 MHz frequency range. So for the weighting

functions we take a reciprocal set of the expansion functions set

1,00E+oO

TDeterminant value
spurious aolutiona

5,00E-01 - -

1,00E+OO -

Fig. 2. Determinant value with Galerkin method.

“OOE+OOItleterminantvah,ie

5ooE-ol~ ~,

. frequency (Hz)

.5,00E-01 - -.

1,00E+OO- ,.

Fig. 3. Determinant value with proposed method.

(13). This set is defined by (14)

Wz,mz,mz = : Cos(m.m(z – a) )4(z, - Z)(,Z - z,)
Wz

(.sin r%rr(z —X1)
‘w. ) (14)

~., a= normalization terms

nz, even E [0, 2(N – l)];

m. even = [2, 2N]m~, odd E [1, 2N – 1];

nz odd c [1, 2N – 1].

The determinant of the matrix generated by the moment method

using these weighting functions is given in Fig. 3. No spurious

solution is detected in this case.
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IV. CONCLUSION

The calculation of eigenmodes in uniform wave guides or in

resonant cavities by integral equation and moment method sometimes

generates non physical solutions. In this paper a practical criterion

for a correct choice of the weighting functions is demonstrated, Its

rigorous implementation would be calculus intensive but we show

that an approximate implementation efficiently eliminates spurious

solutions generated by the conventional Galerkin’s method without

lengthening computations.
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A New FlilM Approach for Open

Boundary Laplace’s Problem

Dong Xingqi and An Tongyi

Abstract-An efficient improved finite element method (FEM) is pre-
sented for electromagnetic Laplace’s problems with open boundary. The

whole infinite domain is divided into a set of infinite elements instead

of ordinary finite elements. Since a special FEM discretization and FEM
solving procedure are used, it can not only take much less computer
memory than that the conventional FEM needs, but also avoid the
calculation error introduced by the truncated bonndary or absorbing
boundary condition used iin conventionrd FEM.

I. INTRODUCTION

Recently, FEM has been more and more widely used for many

electromagnetic problems with open boundary. Because in FEM the

solution domain is discretized with finite elements, only finite domain

problems can be handled directly. So, the solution domain with

open boundary must be truncated. A relatively simple technique to

implement is to select an external boundary with a zero potential

to truncate the solution domain. Another alternative is to use an

appropriate absorbing boundary condition or infinite element [1 ]–[3].

This paper presents a new FEM technique for static electromagnetic

problems with open boundary. It utilizes a special discretization form

to divide the whole infinite domain into infinite triangular elements.

So no truncated boundary or absorbing boundary is needed and

the calculation error produced by appropriate boundary condition is

avoided. As an example, the capacitance matrix for the two coupled

microstrips with open-boundary is calculated and the numerical

results are compared with those obtained by other methods.

II. NEW FEM PROCEDURE

We begin with our discussion of a two-dimensionaf electrostatic

open boundary problem. Assuming that the solution domain is fl,

and its open boundary is I’.. We use a regukw polygon 170, which

contains the solution domain OS, to divide the whole infinite domain

$2 into two parts (see Fig. 1). Defining that the region within ro is

Q,. and the one out of ro is flOu~. ro may be placed very close t~

r,. If f7, itself is a regukrr polygon, then it is selected as 170.

A. Analysis of fl,n

Because the region L?,. is a finite domain, it can be treated by

conventional FEM. The electromagnetic field distribution can be

obtained from the scalar potential @(z, g) satisfying the Laplace’s

equation with associated Dirichlet or Neumann boundary condition.

The region Q,. is subdivided to triangular finite elements and the

stiffness matrix lI,n can be obtained by assembling each element

coefficient matrix. Assuming that the number of nodes on ro is MO

and the scalar potentials on ro form a column vector I?o of order

MO, the number of remaining nodes is Af,n and the corresponding

potentials form a column vector O,. of order Lf,n. Thus, the

functional within the region Cl,n can be obtained by
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